sábado, 19 de maio de 2012

Cinemática Vetorial

Na Cinemática Escalar, estudamos a descrição de um movimento em trajetória conhecida, utilizando as grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento, mesmo que não sejam conhecidas previamente as trajetórias. 


Grandezas Escalares – Ficam perfeitamente definidas por seus valores numéricos acompanhados das respectivas unidades de medida. Exemplos: massa, temperatura, volume, densidade, comprimento, etc. 


Grandezas vetoriais – Exigem, além do valor numérico e da unidade de medida, uma direção e um sentido para que fiquem completamente determinadas. Exemplos: deslocamento, velocidade, aceleração, força, etc. 


VETORES 


Para representar as grandezas vetoriais, são utilizados os vetores: entes matemáticos abstratos caracterizados por um módulo, por uma direção e por um sentido. 


Representação de um vetor – Graficamente, um vetor é representado por um segmento orientado de reta: 
 
Elementos de um vetor: 


Direção – Dada pela reta suporte (r) do vetor. 


Módulo – Dado pelo comprimento do vetor. 


Sentido – Dado pela orientação do segmento. 


Resultante de vetores (vetor-soma) – Considere um automóvel deslocando-se de A para B e, em seguida, para C. O efeito desses dois deslocamentos 
 combinados é levar o carro de A para C. Dizemos, então, que o vetor é a soma ou resultante dos vetores e . 
                      
          
 Regra do Polígono – Para determinar a resultantedos vetores , traçamos, como na figura acima, os vetores de modo que a origem de um coincida com a extremidade do outro. O vetor que une a origem de com a extremidade de é o resultante 


Regra do paralelogramo – Os vetores são dispostos de modo que suas origens coincidam. Traçando-se um paralelogramo, que tenhacomo lados, a resultante será dada pela diagonal que parte da origem comum dos dois vetores. 


          
Componentes ortogonais de um vetor – A componente de um vetor, segundo uma dada direção, é a projeção ortogonal (perpendicular) do vetor naquela direção. Decompondo-se um vetor , encontramos suas componentes retangulares, y, que conjuntamente podem substituí-lo, ou seja, y.

Nenhum comentário:

Postar um comentário